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a b s t r a c t

Four isomers of 5�-androstan-3,17-diol have been transformed by the filamentous fungus Aspergillus
tamarii, an organism which has the ability to convert progesterone to testololactone in high yield through
an endogenous four step enzymatic pathway. The only diol handled within the lactonization path-
way was 5�-androstan-3�,17�-diol which, uniquely underwent oxidation of the 17�-alcohol to the
17-ketone prior to its Baeyer–Villiger oxidation and the subsequent production of 3�-hydroxy-17a-oxa-
D-homo-5�-androstan-17-one. This demonstrated highly specific stereochemical requirements of the
17�-hydroxysteroid dehydrogenase for oxidation of this specific steroidal diol to occur. In contrast,
ungus
7�-Hydroxysteroid dehydrogenase
aeyer–Villiger oxidase
ydroxylation
actonization

the other three diols were transformed within the hydroxylation pathway resulting in functionaliza-
tion at C-11�. Only 5�-androstan-3�,17�-diol could bind to the hydroxylase in multiple binding modes
undergoing monohydroxylation in 6� and 7� positions. Evidence from this study has indicated that
hydroxylation of saturated steroidal lactones may occur following binding of ring-D in its open form in
which an �-alcohol is generated with close spatial parity to the C-17� hydroxyl position. All metabolites
were isolated by column chromatography and were identified by 1H, 13C NMR and DEPT analysis and
further characterized using infra-red, elemental analysis and accurate mass measurement.
. Introduction

The fungus Aspergillus tamarii contains an endogenous sequen-
ial enzymatic pathway (Fig. 1) which converts progesterone (1) via
aeyer–Villiger oxidation to testosterone acetate (2). This under-
oes hydrolysis to form testosterone (3) and is then oxidised
o androst-4-en-3,17-dione (4). A final Baeyer–Villiger oxidation
f the C-17 ketone affords testololactone (5) in high yield [1].
ivergence from this pathway can occur through testosterone

3) which, can be functionalized by a hydroxylase affording 11�-
ydroxytestosterone. Progesterone (1) can also undergo reversible
eduction of the C-20 ketone resulting in (6), the equilibrium
etween the reductase and the oxidase is thought to be dynamic

2]. 20(R)-Reduction products of progesterone analogues have been
solated in a number of studies [2,3].

Steroids differing in side-chain structure [2,3] substituent posi-
ion [4,5] and ring-D structure [6,7] have been transformed in whole
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cell cultures of A. tamarii. These studies have demonstrated that a
wide-range of structurally diverse steroids can be handled by the
endogenous pathways within this organism, and have highlighted
the powerful effect of single functional groups in directing their
metabolic fate (oxidative or reductive) [3,6,7]. To date, no single
study has determined the metabolic fate of all four isomers of 5�-
androstan-3,17-diol. This is of significance due to the importance
of hydrogen bonding in steroid/enzyme interactions [8–16] and in
determining if specific stereochemistry is handled within differ-
ent metabolic pathways. We have also modified a previous [17]
synthetic strategy to facilitate an expedient route to 3�-hydroxy
containing 17�- and 17�-diols that, as with the other analogues
[18–23] have a broad range of interesting biological activity in their
own right [24–27].

2. Materials and methods

2.1. Chemicals and reagents
5�-Androstan-3�,17�-diol (13) and 5�-androstan-3�,17�-diol
(14) were synthesized as previously described [17] and were of high
purity (99%+ by carbon content) as determined by elemental analy-
sis found: C, 77.39; H, 11.47. C19H32O2 requires C, 78.03; H, 11.03%

dx.doi.org/10.1016/j.jsbmb.2010.08.010
http://www.sciencedirect.com/science/journal/09600760
http://www.elsevier.com/locate/jsbmb
mailto:c.hunter@bton.ac.uk
dx.doi.org/10.1016/j.jsbmb.2010.08.010
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Table 2
13C NMR data for synthesis of the 3�-containing diols determined in CDCl3.

Carbon atom Compounds

7 8 9 10 11 12

1 31.56 31.48 32.01 32.05 32.32 32.22
2 30.85 29.04 31.48 31.97 29.03 29.02
3 66.37 66.49 66.51 66.58 66.55 66.57
4 35.86 35.83 35.81 35.94 35.91 37.24
5 35.04 39.16 39.31 39.36 39.10 39.12
6 28.25 24.35 28.37 28.56 28.55 28.50
7 29.00 28.39 29.00 29.04 32.26 32.13
8 39.11 34.93 34.57 34.12 35.76 35.33
9 51.50 53.75 54.67 55.17 54.13 54.47

10 35.47 36.28 36.30 45.39 36.40 36.23
11 21.75 20.43 20.63 20.75 24.60 20.40
12 32.14 34.28 36.26 37.16 32.32 38.74
13 47.48 44.07 50.04 45.58 45.53 41.89
14 54.43 54.68 54.79 56.17 48.78 52.14
15 20.04 23.28 33.63 32.09 20.28 35.89
16 35.78 32.16 112.93 129.29 31.49 71.87
17 221.10 163.90 137.48 144.00 80.06 52.04
18 11.18 17.06 15.28 17.08 17.11 18.70
19 13.83 11.18 11.14 11.18 11.20 11.19

Table 3
Significant infra-red absorption signals for compounds 7–12.

Compound –OH >C O >C C<

3�-Hydroxy-5�-androstan-17-one (7) 3379 1724
3�-Hydroxy-5�-androstan-17-hydrazone (8) 3343

T
1

ig. 1. The endogenous lactonization pathway present in Aspergillus tamarii KITA, t
educto-oxidase interconverting (1) and (6) and the minor 11�-hydroxylation path

or compound (13) and found: C, 77.50; H, 11.54. C19H32O2 requires
, 78.03; H, 11.03% for compound (14). 3�-Hydroxy-5�-androstan-
7-one was the starting material for the synthetic sequence to
ompounds (13) and (14) was purchased from Steraloids Ltd. (UK).
rom the same supplier 3�-hydroxy-5�-androstan-17-one was
btained and initiated the reaction sequence to 5�-androstan-
�,17�-diol (11) and 5�-androstan-3�,17�-diol (15) which were
lso found to be of high purity (99%+ by carbon content) as deter-
ined by elemental analysis found: C, 77.75; H, 11.77. C19H32O2

equires C, 78.03; H, 11.03% for compound (11) and found: C, 77.76;
, 10.85. C19H32O2 requires C, 78.03; H, 11.03% for (15). Solvents
ere of analytical grade; petroleum ether refers to the fraction
ith a boiling point of 60–80 ◦C. Silica for column chromatogra-
hy was Merck 9385 and TLC was performed with Macherey-Nagel
lugram® SIL G/UV254.

.2. Formation of hydrazone (8)

A solution of 3�-hydroxy-5�-androstan-17-one (7) (3 g) in
thanol (30 cm3) was treated with triethylamine (6 cm3) and
ydrazine hydrate (20 cm3) and the solution was heated under
eflux for 3 h. The solution was poured into cold water to give
�-hydroxy-5�-androstan-17-hydrazone (8) (3.1 g) which crystal-

ized from ethanol as cubes m.p. 239–241 ◦C found: C, 74.79; H,
0.37; N, 9.03. C19H32N2O requires C, 74.95; H, 10.59; N, 9.20%. For
pectroscopic data please refer to Tables 1–3.

.3. Formation of vinyl iodide (9)

3�-Hydroxy-5�-androstan-17-hydrazone (8) (3 g) in dry THF
70 cm3) and triethylamine (30 cm3) under nitrogen was treated
ith iodine (4 g in 12.5 cm3 THF) at room temperature. After nitro-

en evolution had ceased the THF was removed in vacuo and the

ixture was extracted with ethyl acetate. The extract was washed
ith dilute hydrochloric acid, water, aqueous sodium hydrogen

arbonate, saturated sodium chloride and dried over sodium sulfate
nd isolated as a gum (3 g), found: 423.115 C19H29INaO requires
23.115. For spectroscopic data please refer to Tables 1–3.

able 1
H NMR data for synthesis of the 3�-containing diols determined in CDCl3.

Compound 3�-H 18-H3

3�-Hydroxy-5�-androstan-17-one (7) 4.05 (t, J = 2.6 Hz) 0.86
3�-Hydroxy-5�-androstan-17-hydrazone (8) 4.04 (t, J = 2.6 Hz) 0.84
17-Iodo-5�-androst-16-en-3�-ol (9) 4.05 (t, J = 2.6 Hz) 0.72
5�-Androst-16-en-3�-ol (10) 4.04 (t, J = 2.6 Hz) 0.75
5�-Androstan-3�,17�-diol (11) 4.04 (t, J = 2.6 Hz) 0.65
5�-Androstan-3�,16�-diol (12) 4.04 (t, J = 2.6 Hz) 0.70
17-Iodo-5�-androst-16-en-3�-ol (9) 3343 1628
5�-Androst-16-en-3�-ol (10) 3276 1588
5�-Androstan-3�,17�-diol (11) 3344
5�-Androstan-3�,16�-diol (12) 3261

2.4. Microorganism
A. tamarii KITA (QM 1223) was purchased from the collection
at CABI Bioscience (UK). Stock cultures were maintained at 4 ◦C on
potato dextrose agar slopes. Steroid transformation studies were
carried out in 3% malt extract medium (Oxoid, UK).

19-H3 Other significant signals

0.80
0.80 4.73 (2H, brs, NH2)
0.80 6.11 (1H, dd, J = 2 Hz, J = 3.5 Hz, 16-H)
0.81 5.69 (1H, brs, 17-H) 5.83 (1H, dd, J = 1.4 Hz, J = 4.3 Hz, 16-H)
0.79 3.71 (1H, d, J = 6 Hz, 17�-H)
0.77 4.44 (1H, m, �/2 = 10 Hz, J = 6.5 Hz, 16�-H)
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Table 4
1H NMR data for steroidal starting material (except compound 11, see Table 1) and transformation products determined in CDCl3.

Reference data 3-H 18-H3 19-H3 Other significant signals

5�-Androstan-3�,17�-diol (13) 3.60 (1H, tt, J = 5 Hz, J = 10 Hz, 3�-H) 0.65 0.82 3.73 (1H, d, J = 5 Hz, 17�-H)
5�-Androstan-3�,17�-diol (14) 0.73 0.81 3.60 (2H, m, �/2 = 16 Hz, 3�-H, 17�-H)
5�-Androstan-3�,17�-diol (15) 4.04 (1H, t, J = 2.6 Hz, 3�-H) 0.73 0.79 3.63 (1H, t, J = 8 Hz, 17�-H)

Transformation products
5�-Androstan-3�,11�,17�-triol (16) 4.05 (1H, t, J = 2.3 Hz, 3�-H) 0.90 1.00 3.70 (1H, d, J = 6 Hz, 17�-H) 4.61 (1H, s, 11�-H)
5�-Androstan-3�,6�,17�-triol (17) 3.60 (1H, tt, J = 5 Hz, J = 10 Hz, 3�-H) 0.89 1.26 3.70 (1H, d, J = 6 Hz, 17�-H) 4.60 (1H, s, 6�-H)
5�-Androstan-3�,7�,17�-triol (18) 3.60 (1H, tt, J = 5 Hz, J = 10 Hz, 3�-H) 0.68 0.85 3.40 (1H, td, J = 5 Hz, J = 10 Hz, 7�-H) 3.70 (1H, d,

J = 6 Hz, 17�-H)
5�-Androstan-3�,11�,17�-triol (19) 3.60 (1H, tt, J = 5 Hz, J = 10 Hz, 3�-H) 0.89 1.00 3.70 (1H, d, J = 6 Hz, 17�-H) 4.61 (1H, s, 11�-H)

0.98 1.05 3.59 (2H, m, �/2 = 16 Hz, 3�-H, 17�-H) 4.33 (1H,
s, 11�-H)

0.75 1.30
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Table 6
Significant metabolite infra-red absorption signals.

Compound –OH Lactone

5�-Androstan-3�,17�-diol (13) 3253 br
5�-Androstan-3�,17�-diol (14) 3456, 3196
5�-Androstan-3�,17�-diol (15) 3322 br
5�-Androstan-3�,11�,17�-triol (16) 3366 br
5�-Androstan-3�,6�,17�-triol (17) 3492, 3320
5�-Androstan-3�,7�,17�-triol (18) 3358 br
5�-Androstan-3�,11�,17�-triol (19) 3358 br

T
1

5�-Androstan-3�,11�,17�-triol (20)

3�-Hydroxy-17a-oxa-D-homo-5�-
androstan-17-one (21)

4.06 (1H, t, J = 2.6 Hz, 3�-H)

.5. Conditions of cultivation and transformation

Spores were transferred aseptically in a category 2 biological
afety cabinet into 500 ml Erlenmeyer flasks containing 300 ml
f sterile media and were incubated for 72 h at 30 ◦C. The cul-
ures were shaken at 180 rpm on an orbital shaker. Aliquots (5 ml)
rom the seed flask were transferred aseptically to 10 flasks and
rown for a further 72 h as above, at the end of which the fun-
us is in log phase growth. After this time period steroid dissolved
n dimethylformamide (DMF) was evenly distributed between the
asks (1 mg/ml) under sterile conditions and incubated for a fur-
her 5 days after which, the metabolites were extracted from the
roth.

.6. Extraction and identification of metabolites

The fungal mycelium was separated from the broth by filtra-
ion under vacuum. Following completion the mycelium was rinsed
ith ethyl acetate (0.5 L) to ensure the entire available steroid was

emoved. The mycelial broth was then extracted thrice with ethyl
cetate (1.5 L). The organic extract was dried over sodium sulfate
nd the solvent evaporated in vacuo to give a gum. This gum was
dsorbed onto silica and chromatographed on a column of silica;

he steroidal metabolites were eluted with increasing concentra-
ions of ethyl acetate in petroleum ether. The solvent was collected
n aliquots (10 ml) and analysed by thin layer chromatography (TLC)
o identify the separated metabolite fractions. The solvent systems
sed for running the TLC plates were 50:50 petroleum ether in ethyl

able 5
3C NMR data for starting materials (13–15) and biotransformation products (16–21) det

Carbon atom Compounds
13 14 15 16

1 32.40 36.75 32.22 32.71
2 31.48 30.54 29.02 28.65
3 71.36 71.31 66.56 68.56
4 38.11 38.18 36.76 35.31
5 44.80 44.91 39.20 39.89
6 28.68 28.57 28.43 27.99
7 32.28 31.63 31.57 32.48
8 35.75 35.55 35.55 31.30
9 54.48 54.47 54.47 57.98

10 37.73 36.81 36.20 30.97
11 20.75 20.84 20.36 66.43
12 37.08 37.03 35.88 40.42
13 43.02 42.49 42.99 44.00
14 48.74 51.01 51.09 50.38
15 24.61 23.40 23.36 24.54
16 31.62 31.51 30.52 37.00
17 80.08 81.99 81.99 79.51
18 17.09 11.15 11.15 19.43
19 12.35 12.36 11.21 14.35
5�-Androstan-3�,11�,17�-triol (20) 3381 br
3�-Hydroxy-17a-oxa-D-homo-5�-

androstan-17-one (21)
3534 br 1712

acetate or pure ethyl acetate. A 50:50 sulfuric acid in methanol
spray was used to develop the TLC plates.

2.7. Analysis and identification of metabolites

Characteristic splitting patterns [28] and shift values [29]
in the 1H and 13C NMR spectra in comparison to the starting
compounds were used to determine metabolite structure in com-
bination with DEPT analysis to identify the nature of the carbon
(Tables 1, 2, 4 and 5). Spectra were recorded on a Bruker WM 360

Spectrometer, all samples were analysed in deuteriochloroform
using tetramethylsilane as the internal standard. High resolution
mass measurement (HRMS) was determined in electrospray ion-
ization (ESI) mode using a Bruker Daltonics Microtof spectrometer.
Infra-red absorption spectra (Tables 3 and 6) were recorded directly

ermined in CDCl3.

17 18 19 20 21

37.64 32.68 37.00 36.89 37.49
31.14 31.35 31.20 30.35 31.95
68.87 71.06 71.09 72.23 66.30
32.73 36.96 37.70 37.69 35.57
50.32 42.07 45.74 45.80 39.33
71.05 37.69 28.16 28.05 28.13
40.41 75.44 32.73 31.96 30.53
31.33 43.59 31.35 31.33 36.09
58.03 52.26 58.04 58.18 53.70
35.38 35.08 35.71 35.70 35.57
20.58 20.86 68.91 71.13 28.68
36.98 38.17 40.43 45.84 30.49
42.74 46.18 43.34 42.05 83.44
45.80 47.84 50.33 52.51 46.35
24.55 27.22 24.56 23.45 19.76
32.56 31.42 32.54 31.17 28.68
79.44 78.88 79.49 82.42 172.50
17.16 17.18 19.41 13.61 20.14
15.49 12.47 15.52 15.46 11.07
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Table 7
Product yields following chromatography.

Starting material Metabolites Yield (%)

5�-Androstan-3�,17�-diol (11) 6
5�-Androstan-3�,11�,17�-triol (16) 12

5�-Androstan-3�,17�-diol (13) 8
5�-Androstan-3�,6�,17�-triol (17) 3
5�-Androstan-3�,7�,17�-triol (18) 55
5�-Androstan-3�,11�,17�-triol (19) 8

5�-Androstan-3�,17�-diol (14) 1
,17�
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pound was monohydroxylated (HRMS ESI: calc. for M+Na 331.224
C19H32NaO3 obsd. 331.224).

The 1H NMR spectrum of 5�-androstan-3�,11�,17�-triol (19)
contained a new signal at 4.61 ppm (1H, s) indicating axial substitu-
5�-Androstan-3�,11�
5�-Androstan-3�,17�-diol (15)

3�-Hydroxy-5�-andr
3�-Hydroxy-17a-oxa

n a Nicolet avatar 320 FT-IR fitted with a Smart Golden Gate®. All
ields obtained from the transformation experiments are listed in
able 7.

. Results

.1. Confirmation of structure for the novel synthetically derived
ompounds (8) and (9)

Comparison of the 1H NMR spectrum of (8) with the starting
aterial (7) demonstrated the presence of a new signal at 4.73 ppm

2H, brs) which was consistent with the amino protons (–NH2).
xamination of the 13C NMR spectrum revealed a range of signal
hifts in the product consistent with replacement of the more elec-
ronegative C-17 carbonyl by the hydrazone. These included upfield
hifts in C-16 (12.5 ppm), C-17 (57.2 ppm), C-13 (3.41) and a down-
eld shift for C-18 (5.88 ppm). The structure was fully supported by
lemental analysis (Section 2.2) and accurate mass measurement
HRMS ESI: calc. for M+Na 327.240 C19H32N2NaO obsd. 327.240).

Comparison of the 1H and 13C NMR spectra of the vinyl iodide
9) with that of the hydrozone (8) enabled confirmation of struc-
ure. The product spectrum (9) was devoid of the resonance signal
t 4.73 (2H, brs) consistent with the loss of the –NH2 and con-
ained a new signal at 6.11 ppm (1H, dd) synonymous with the
resence of a ring-D double bond. This was further confirmed in
he 13C NMR spectrum with the presence of resonance signals for
-17 (137.48 ppm) and C-16 (112.93 ppm) consistent with a dou-
le bond and a concomitant downfield shift for C-15 to 33.63 ppm
�10.35 ppm). The presence of the iodine was fully supported by
ccurate mass measurement (Section 2.2).

.2. Products of metabolism and structural identification

Transformation of 5�-androstan-3�,17�-diol (11) resulted in
he isolation of one product. The structure of 5�-androstan-
�,11�,17�-triol (16) was determined by comparison of its’ spectra
ith that of (11). The 1H NMR revealed significant downfield shifts

or both 18-H and 19-H methyl protons respectively of 0.25 ppm
nd 0.21 ppm and taken into account with a new signal at 4.60 ppm
1H, s) this strongly suggest substitution at the 11�-position. This
as confirmed by the product 13C NMR spectra which demon-

trated �-carbon downfield shift for C-11 (41.83 ppm), �-carbon
ownfield shifts for C-9 (3.85 ppm) and C-12 (8.19 ppm) and �-
arbon upfield shifts for C-8 (4.43 ppm), C-10 (5.43 ppm) and C-13
1.53 ppm). Comparatively both methyl groups were also shifted
ownfield C-18 (2.32 ppm) and C-19 (3.15 ppm) which is consistent

ith the presence of a C-11� hydroxyl group. The monohydroxy-

ation was fully supported by accurate mass measurement (HRMS
SI: calc. for M+Na 331.224 C19H32NaO3 obsd. 331.223) (Fig. 2).

Transformation of 5�-androstan-3�,17�-diol (13) afforded
hree products. In the 1H NMR spectrum for 5�-androstan-
-triol (20) 1
3

-17-one (7) 23
mo-5�-androstan-17-one (21) 29

3�,6�,17�-triol (17) the 19-methyl protons had undergone a
significant downfield shift (0.44 ppm) in comparison to the starting
material (13). The product spectrum also contained a new reso-
nance signal at 4.61 ppm (1H, s) indicating hydroxylation at an axial
proton, possibly 6�-H. This notion was confirmed by comparison of
the 13C NMR spectrum of (17) with that of (13). The beta carbons (C-
5 and C-7) had undergone downfield shifts (5.52 ppm and 8.13 ppm
respectively) as had C-19 (3.14 ppm) and carbons gamma to C-6 had
undergone upfield shifts C-4 (5.38 ppm), C-8 (4.42 ppm) and C-10
(2.35 ppm). Monohydroxylation was confirmed by accurate mass
measurement (HRMS ESI: calc. for M+Na 331.224 C19H32NaO3 obsd.
331.223).

Comparison of the 1H NMR of 5�-androstan-3�,7�,17�-triol
(18) with that of (13) revealed a new signal at 3.40 ppm (1H, td)
indicating hydroxylation at an equatorial proton with no concomi-
tant shift in either of the methyl signals suggesting substitution at
C-7�. This was supported by comparison of the 13C NMR spectrum
of this product and that of (13). Carbons beta to C-7 underwent
downfield shifts C-6 (9.01 ppm) and C-8 (7.84 ppm) with those �-
carbon signals shifting C-5 (2.73 ppm), C-9 (2.22 ppm) and C-14
(0.9 ppm). Accurate mass measurement confirmed that this com-
Fig. 2. Synthetic reaction pathway to 5�-androstan-3�,17�-diol (11): (i)
H2NNH2/(CH3CH2)3N/EtOH; (ii) I/(CH3CH2)3N/THF; (iii) Na/EtOH; (iv) (a) B2H6/THF
and (b) H2O2/NaOH.
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Fig. 3. Transformation of steroidal diols follow

ion. In comparison to the spectrum of (13) both methyl groups had
ndergone significant downfield shifts 18-H (0.24 ppm) and 19-H
0.18 ppm) strongly suggesting hydroxylation at the 11�-position.
his was confirmed following comparison of the product 13C NMR
pectrum to that of (13) which demonstrated �-carbon downfield
hifts for C-9 (3.56 ppm) and C-12 (3.35 ppm) and �-carbon upfield
hifts for C-8 (4.40 ppm) and C-10 (2.02 ppm). Monohydroxylation
as confirmed by accurate mass measurement (HRMS ESI: calc. for
+Na 331.224 C19H32NaO3 obsd. 331.223).
Transformation of 5�-androstan-3�,17�-diol (14) afforded one

roduct, 5�-androstan-3�,11�,17�-triol (20). This was identified
y inspection of its’ spectra with the 1H NMR, compared to (14),
hich, contained a new signal at 4.33 ppm (1H, s) suggestive of axial

ubstitution. This information combined with the downfield shifts
bserved for 18-H (0.25 ppm) and 19-H (0.26 ppm) was supportive
f C-11� hydroxylation. The 13C NMR spectrum of (20) was consis-
ent with beta carbon downfield shift for C-9 (3.71 ppm) and C-12
37.03 ppm) and �-carbon upfield shifts for C-8 (4.22 ppm) and C-10
1.11 ppm). Monohydroxylation was confirmed by accurate mass
etermination (HRMS ESI: calc. for M+Na 331.224 C19H32NaO3
bsd. 331.224).

Transformation of 5�-androstan-3�,17�-diol (15) resulted in
wo products. 3�-Hydroxy-5�-androstan-17-one (7) was devoid of
he triplet signal (4.05 ppm) generated by the 17�-H in the start-
ng material indicating that oxidation to a ketone may have taken
lace. This was confirmed by inspection of the product 13C NMR
pectrum that contained a resonance signal at 221.10 ppm and is
ully consistent with a 5-ring ketone. Comparison of the 1H and 13C

MR spectra of (7) to that of an authentic sample [6] fully supported

he proposed structure (Fig. 3).
3�-Hydroxy-17a-oxa-D-homo-5�-androstan-17-one (21) was

dentified by comparison of its’ spectra to that of (7) this demon-
trated a significant downfield shift for the 18-methyl protons of
days incubation with Aspergillus tamarii KITA.

0.44–1.30 ppm which is fully indicative of hetero-atom insertion
[2,3,6] in ring-D. This was supported in the 13C NMR spectrum
with downfield shifts for C-13 (35.96 ppm) and C-18 (8.96 ppm),
directly associated with insertion of the hetero-atom, and upfield
shifts consistent with the reduced 6 membered ring strain for C-
14 (8.08 ppm) and C-17 (48.60 ppm). Comparison of the product
spectrum to that of an authentic sample [6] fully supported the
proposed structure.

4. Discussion

Transformation of this series of the four isomers of androstan-
3,17-diol revealed exclusive handling of 5�-androstan-3�,17�-diol
(15) within the lactonization pathway, ultimately resulting in
the generation of 3�-hydroxy-17a-oxa-D-homo-5�-androstan-
17-one (21). Before the lactone (21) is formed the oxidation of
the C-17�-alcohol to a C-17 ketone must occur via a 17� hydrox-
ysteroid dehydrogenase (17�-HSD). As this only occurs with one
of the four isomers it demonstrates that there is a very pre-
cise stereochemical requirement for the oxidation of the C-17�
hydroxyl group. This is interesting in that some 17�-HSD enzymes
show a degree of flexibility in structure with respect to han-
dling steroidal substrates e.g. in bacteria [30] and plant [31], or
an ability to accept steroids in alternative binding conformations
in human cells [32,33]. The 17�-HSD was unable to oxidise the
three other steroidal diol isomers (11,13,14) all of which underwent
11�-hydroxylation. It is remarkable that the oxidation of 5�-
androstan-3�,17�-diol (14) did not occur, as it is only structurally

different at C-3 where the alcohol has beta stereochemistry. This
is another example of the importance of single functional groups
[3,6] and their stereochemistry in guiding metabolic fate within this
organism. Interestingly, 5�-androstan-3�,17�-diol (13) demon-
strated the greatest range of monohydroxylated products and if
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hese occurred solely within the 11�-hydroxylase, it would be con-
istent with reverse (6�), inverted normal (7�) and normal (11�)
inding. Identical positions of hydroxylation have been observed
ollowing metabolism of the 6-membered ring-D containing lac-
one 3�-hydroxy-17a-oxa-D-homo-5�-androstan-17-one [7]. This

ay indicate that during the hydroxylation process the lactone
ing is open, thus generating an alcohol with 17�-stereochemistry
n remarkably spatial proximity to the 17�-alcohol of (13). The

etabolite 5�-androstan-3�,7�,17�-triol was isolated in signifi-
ant yield (55%) presumably demonstrating that optimal binding,
f in the 11�-hydroxylase, is in the inverted normal binding posi-
ion. The recovered total yields of steroid from the transformation
f compounds (11) and (14) were low compared to those from (13)
nd (15) (Table 7). Interestingly the steroids with the low recovery
etained both hydroxyl groups on the same side of the molecule
3�,17� and 3�,17�).

It could be speculated that the unique metabolic handling
esulting in compound (21) may either be directly or indirectly
ue to compound (15) having inhibitory activity against the 11�-
ydroxylase. This notion may be supported from previous work in
hich the ring-D lactone in a range of steroidal analogues does not

ppear to inhibit 11�-hydroxylase activity [1,6]. No oxidation of
he 3�-alcohols to 3-ketones was observed, this is consistent with
revious observations [6] with this organism. Previous studies with
. tamarii have also demonstrated that 3�-alcohols and acetates [6]
o not block Baeyer–Villiger oxidation of the C-17 ketone, this also
olds true in the presence of 11�-hydroxyl groups [3].

This study has not only revealed unique effects of stereochem-
stry and polar binding on steroidal diol fate in A. tamarii but it
as also generated a range of novel triols, one in significant yield,
hich may be of biological interest, as steroids containing this type

f functionality have distinct activity and/or play important inter-
ediate roles in metabolism [34–37].
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